LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast formation of quantized interlayer vibrations in Bi2Se3 by photoinduced strain waves.

Photo from wikipedia

This study comprehensively investigated the coherent lattice dynamics in Bi2Se3 by ultrafast optical pump-probe spectroscopy with tunable near-infrared probe pulses. Sample-thickness- and probe-wavelength-dependent experiments revealed the key role of Bi2Se3… Click to show full abstract

This study comprehensively investigated the coherent lattice dynamics in Bi2Se3 by ultrafast optical pump-probe spectroscopy with tunable near-infrared probe pulses. Sample-thickness- and probe-wavelength-dependent experiments revealed the key role of Bi2Se3 optical property in the generation and detection of photoinduced strain waves, whose confinement initiated coherent interlayer vibrations. Furthermore, the frequency and lifetime of the interlayer vibrations could be quantitatively explained with a modified linear chain and an acoustic mismatch model considering elastic coupling at sample-substrate interfaces. The results of this work provide insights for analyzing and interpreting, through ultrafast optical spectroscopy, nanomechanical interactions in layered materials.

Keywords: ultrafast formation; photoinduced strain; spectroscopy; formation quantized; strain waves; interlayer vibrations

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.