LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High parametric efficiency in laser cavity-soliton microcombs.

Photo by nci from unsplash

Laser cavity-soliton microcombs are robust optical pulsed sources, usually implemented with a microresonator-filtered fibre laser. In such a configuration, a nonlinear microcavity converts the narrowband pulse resulting from bandwidth-limited amplification… Click to show full abstract

Laser cavity-soliton microcombs are robust optical pulsed sources, usually implemented with a microresonator-filtered fibre laser. In such a configuration, a nonlinear microcavity converts the narrowband pulse resulting from bandwidth-limited amplification to a background-free broadband microcomb. Here, we theoretically and experimentally study the soliton conversion efficiency between the narrowband input pulse and the two outputs of a four-port integrated microcavity, namely the 'Drop' and 'Through' ports. We simultaneously measure on-chip, single-soliton conversion efficiencies of 45% and 25% for the two broadband comb outputs at the 'Drop' and 'Through' ports of a 48.9 GHz free-spectral range micro-ring resonator, obtaining a total conversion efficiency of 72%.

Keywords: soliton; soliton microcombs; laser; cavity soliton; efficiency; laser cavity

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.