As the concentration of VOC gases is very high in organic chemical reactions, in order to ensure the safety and accuracy of the experiment, it is very important to develop… Click to show full abstract
As the concentration of VOC gases is very high in organic chemical reactions, in order to ensure the safety and accuracy of the experiment, it is very important to develop a gas sensor with a wide detection range. Exploring the mechanism and law of photonic bandgap (PBG) shift after absorption of volatile organic compounds (VOCs) vapors are two basic premises of resolving the PCLC for gas detection with a wide measurement range and stability. Herein, the PCLC films doped with different concentrations of polymer are used for acetone vapor detection, and the shift law of the PBG position is analyzed. As the increase of the detected gas concentration, the intractable problem is that the PBG position of PCLC exhibits red- and blue-shifts successively. Particularly, the pre-compressed technique is highly important for development of a high-performance PCLC based fiber probe, which is crucial for effectively solving the bottleneck problem mentioned. It enables detection of a wide range of acetone vapor concentration from 0 ppm to 50×104 ppm, and the corresponding mean sensitivity of 0.23 pm/ppm. In addition, the thermal crosstalk is generally negligible at temperature below 40°C. Therefore, it is a breakthrough that the described technique not only effectively enhances the stability and robustness of the PCLC fiber probe for VOC vapor detection, but also improves its sensitivity and detection range. The pre-compressed technique provides a novel avenue for fabrication of other PCLC-based devices.
               
Click one of the above tabs to view related content.