LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic phase detection with a sub-10 fs timing jitter for terahertz time-domain spectroscopy systems.

Photo from wikipedia

Terahertz time-domain spectroscopy systems based on resonator-internal repetition-rate modulation, such as SLAPCOPS and ECOPS, rely on electronic phase detectors which are typically prone to exhibit both a non-negligible random and… Click to show full abstract

Terahertz time-domain spectroscopy systems based on resonator-internal repetition-rate modulation, such as SLAPCOPS and ECOPS, rely on electronic phase detectors which are typically prone to exhibit both a non-negligible random and systematic timing error. This limits the quality of the recorded information significantly. Here, we present the results of our recent attempt to reduce these errors in our own electronic phase detection systems. A more than six-fold timing-jitter reduction from 59.0 fs to 8.6 fs led to a significant increase in both exploitable terahertz bandwidth and signal-to-noise ratio. Additionally, utilizing our interferometrically monitored delay line as a calibration standard, the systematic error could be removed almost entirely and thus, excellent resolution of spectral absorption lines be accomplished. These improvements increased the accuracy of our multi-layer thickness measurements based on electronic phase detection by more than a factor of five, pushing the overall performance well into the sub-μm regime.

Keywords: spectroscopy; terahertz time; electronic phase; phase detection

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.