LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the efficiency of graphene-based THz modulator by optimizing the Brewster angle.

Photo by bcsxp from unsplash

The gate-controllable electronical property of graphene provides a possibility of active tuning property for THz modulator. However, the common modulation technology which only depends on voltage cannot solve the problem… Click to show full abstract

The gate-controllable electronical property of graphene provides a possibility of active tuning property for THz modulator. However, the common modulation technology which only depends on voltage cannot solve the problem of power consumption limitation in communication applications. Here, we demonstrated a Brewster angle-controlled graphene-based THz modulator, which could achieve a relatively high modulation depth with low voltage. First, we explored the complex relationships among the Brewster angles, reflection coefficients and the conductivities of graphene. Then, we further investigated the optimal incident angle selection based on the unusual reflection effect which occurs at Brewster angle. Finally, an improved scheme by dynamically adjusting the incident angle was proposed in this paper. It would make it possible that the modulator could achieve a modulation depth of more than 90% with a Fermi level as low as 0.2eV at any specific frequency in the range of 0.4THz-2.2THz. This research will help to realize a THz modulator with high-performance and ultra-low-power in quantities of applications, such as sensing and communication.

Keywords: brewster angle; thz modulator; graphene; modulator

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.