LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Complex 10-nm resolution nanogap and nanowire geometries for plasmonic metasurface miniaturization.

Photo by kellysikkema from unsplash

Emerging electromagnetic inverse design methods have pushed nanofabrication methods to their limits to extract maximum performance from plasmonic aperture-based metasurfaces. Using plasmonic metamaterial-lined apertures as an example, we demonstrate the… Click to show full abstract

Emerging electromagnetic inverse design methods have pushed nanofabrication methods to their limits to extract maximum performance from plasmonic aperture-based metasurfaces. Using plasmonic metamaterial-lined apertures as an example, we demonstrate the importance of fine nanowire and nanogap features for achieving strong miniaturization of plasmonic nanoapertures. Metamaterial-lined nanoapertures are miniaturized over bowtie nanoapertures with identical minimum feature sizes by a factor of 25% without loss of field enhancement. We show that features as small as 10 nm can be reliably patterned over the wide areas required of metasurfaces using the helium focused ion beam microscope. Under imperfect fabrication conditions, we achieve 11-nm-wide nanogaps and 12-nm-wide nanowires over an area of 13 µm2, and successfully validate our results with optical characterization and comparable full-wave simulations.

Keywords: complex resolution; miniaturization; nanogap; resolution nanogap; nanogap nanowire; nanowire

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.