LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monocular kilometer-scale passive ranging by point-spread function engineering.

Photo from wikipedia

Standard imaging systems are designed for 2D representation of objects, while information about the third dimension remains implicit, as imaging-based distance estimation is a difficult challenge. Existing long-range distance estimation… Click to show full abstract

Standard imaging systems are designed for 2D representation of objects, while information about the third dimension remains implicit, as imaging-based distance estimation is a difficult challenge. Existing long-range distance estimation technologies mostly rely on active emission of signal, which as a subsystem, constitutes a significant portion of the complexity, size and cost of the active-ranging apparatus. Despite the appeal of alleviating the requirement for signal-emission, passive distance estimation methods are essentially nonexistent for ranges greater than a few hundreds of meters. Here, we present monocular long-range, telescope-based passive ranging, realized by integration of point-spread-function engineering into a telescope, extending the scale of point-spread-function engineering-based ranging to distances where it has never been tested before. We provide experimental demonstrations of the optical system in a variety of challenging imaging scenarios, including adversarial weather conditions, dynamic targets and scenes of diversified textures, at distances extending beyond 1.7 km. We conclude with brief quantification of the effect of atmospheric turbulence on estimation precision, which becomes a significant error source in long-range optical imaging.

Keywords: spread function; point spread; function engineering

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.