The organic-inorganic hybrid perovskite CH3NH3PbBr3(MAPbBr3) has been well developed in the X-ray to visible light band due to its superior optoelectronic properties, but this material is rarely studied in the… Click to show full abstract
The organic-inorganic hybrid perovskite CH3NH3PbBr3(MAPbBr3) has been well developed in the X-ray to visible light band due to its superior optoelectronic properties, but this material is rarely studied in the infrared band. In this paper, a UV-NIR broadband optical detector based on MAPbBr3 single crystal is studied, and the response range can reach the near-infrared region. In the visible light band, the optical response of the device is mainly caused by the photoelectric effect; in the near-infrared band, the optical response of the device is mainly caused by the thermal effect. The carrier response of MAPbBr3 material under different wavelengths of light was investigated using a non-contact measurement method (optical pump terahertz (THz) probe spectroscopy). This paper also builds a set of photoelectric sensor array components, and successfully realizes the conversion of optical image signals to electrical image signals in the visible light band and infrared band. The experimental results show that MAPbBr3 crystals provide a new possibility for UV-NIR broadband photodetectors.
               
Click one of the above tabs to view related content.