LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-efficiency and robust binary fringe optimization for superfast 3D shape measurement.

Photo by davidclode from unsplash

By utilizing 1-bit binary fringe patterns instead of conventional 8-bit sinusoidal patterns, binary defocusing techniques have been successfully applied for high-speed 3D shape measurement. However, simultaneously achieving high accuracy and… Click to show full abstract

By utilizing 1-bit binary fringe patterns instead of conventional 8-bit sinusoidal patterns, binary defocusing techniques have been successfully applied for high-speed 3D shape measurement. However, simultaneously achieving high accuracy and high speed remains challenging. To overcome this limitation, we propose a high-efficiency and robust binary fringe optimization method for superfast 3D shape measurement, which consists of 1D optimization and 2D modulation. Specifically, for 1D optimization, the three-level OPWM technique is introduced for high-order harmonics elimination, and an optimization framework is presented for generating the 'best' three-level OPWM pattern especially for large fringe periods. For 2D modulation, a single-pattern three-level OPWM strategy is proposed by utilizing all the dimensions for intensity modulation to decrease the required projection patterns. Thus, the proposed method essentially belongs to the 2D modulation technique, yet iterative optimization is carried out along one dimension, which drastically improves the computational efficiency while ensuring high accuracy. With only one set of optimized patterns, both simulations and experiments demonstrate that high-quality phase maps can be consistently generated for a wide range of fringe periods (e.g., from 18 to 1140 pixels) and different amounts of defocusing, and it can achieve superfast and high-accuracy 3D shape measurement.

Keywords: shape measurement; binary fringe; fringe; optimization

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.