The phase sensitivity of SU(1,1) interferometer is investigated using a coherent state and an m-coherent superposition squeezed vacuum states as inputs and the intensity detection. Photon-subtraction, photon-addition and photon superposition… Click to show full abstract
The phase sensitivity of SU(1,1) interferometer is investigated using a coherent state and an m-coherent superposition squeezed vacuum states as inputs and the intensity detection. Photon-subtraction, photon-addition and photon superposition are three special cases. Both ideal and realistic cases are considered. It is shown that the coefficient s of coherent superposition can modulate the performance of phase sensitivity, especially in a small squeezing region. Even in the presence of photon losses, the three-kind of non-Gaussian operations can achieve the improvement of measure precision, and the photon addition presents the best robustness compared to the photon subtraction and coherent superposition. For small squeezing, the first-order non-Gaussian operation may be the most preferred in improving phase sensitivity if considering the limitations of experimental conditions. Our results may be helpful for the practical application of quantum information.
               
Click one of the above tabs to view related content.