LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Annular phase grating-assisted recording of an ultrahigh-order optical orbital angular momentum.

Photo from wikipedia

Ultrahigh-order optical orbital angular momentum (OAM) states of the identification over ±270 orders are implemented by annular phase grating (APG) and Gaussian beams with different wavelengths. Particularly, the far-field diffraction… Click to show full abstract

Ultrahigh-order optical orbital angular momentum (OAM) states of the identification over ±270 orders are implemented by annular phase grating (APG) and Gaussian beams with different wavelengths. Particularly, the far-field diffraction intensity patterns feature the spiral stripes instead of Hermitian-Gaussian (HG)-like fringes. It's worth noting that the spiral stripes present uniform distribution, thus the order of OAM states can be intuitively acquired. More specifically, the OAM states can be confirmed from the total amount and rotating direction of the spiral stripes. Compared with traditional methods, the propose scheme contributes to the perfect-distributed and sharper spiral stripes. Moreover, it also makes an easier observation of the patterns in the CCD camera with limited imaging targets. In our experimental setup, the optical filter is removed and the APG parameters are not strictly required. Therefore, the propose optical transmission system is equipped with the advantages of efficiency, robustness and low cost, which paves a promising way for the communication capacity enhancement.

Keywords: optical orbital; orbital angular; ultrahigh order; angular momentum; order optical; order

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.