LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of surface enhanced Raman scattering performance based on Ag nanoparticle-modified vanadium-titanium nanorods with tunable nanogaps.

Photo by rachaelgorjestani from unsplash

The combination of new noble metal nanomaterials and surface enhanced Raman scattering (SERS) technology has become a new strategy to solve the problem of low sensitivity in the detection of… Click to show full abstract

The combination of new noble metal nanomaterials and surface enhanced Raman scattering (SERS) technology has become a new strategy to solve the problem of low sensitivity in the detection of traditional Chinese medicine. In this work, taking natural cicada wing (C.w.) as a template, by optimizing the magnetron sputtering experimental parameters for the growth of Ag nanoparticles (NPs) on vanadium-titanium (V-Ti) nanorods, the nanogaps between the nanorods were effectively regulated and the Raman signal intensity of the Ag15/V-Ti20/C.w. substrate was improved. The proposed homogeneous nanostructure exhibited high SERS activity through the synergistic effect of the electromagnetic enhancement mechanism at the nanogaps between the Ag NPs modified V-Ti nanorods. The analytical enhancement factor (AEF) value was as high as 1.819 × 108, and the limit of detection (LOD) was 1 × 10-11 M for R6G. The large-scale distribution of regular electromagnetic enhancement "hot spots" ensured the good reproducibility with the relative standard deviation (RSD) value less than 7.31%. More importantly, the active compound of Artemisinin corresponded the pharmacological effect of Artemisia annua was screened out by SERS technology, and achieved a LOD of 0.01 mg/l. This reliable preparation technology was practically applicable to produce SERS-active substrates in detection of pharmacodynamic substance in traditional Chinese medicine.

Keywords: titanium nanorods; raman scattering; vanadium titanium; surface enhanced; medicine; enhanced raman

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.