LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steep freeform measurement method based on a normal transverse differential confocal.

Photo by justsimms from unsplash

A normal transverse laser differential confocal freeform measurement (NTDCFM) method was proposed to address the high-precision measurement difficulty of steep freeform surfaces with large variations in inclination, scattering, and reflectance.… Click to show full abstract

A normal transverse laser differential confocal freeform measurement (NTDCFM) method was proposed to address the high-precision measurement difficulty of steep freeform surfaces with large variations in inclination, scattering, and reflectance. Using D-shaped diaphragm technology, the freeform surface under test (FSUT) axial variation transformed into a spot transverse movement on the detection focal plane. Meanwhile, a 2D position sensitive detector (PSD) was used to obtain the normal vector of the sampling points so that the measuring sensor's optical axis could track the FSUT normal direction. The focus tracking method extended the sensor measurement range. Theoretical analysis and experimental results showed that the axial resolution of the NTDCFM was better than 0.5 nm, the direction resolution of the normal vector was 0.1°, the maximum surface inclination could be measured up to 90°, the sensor range was 5 mm, and the measurement repeatability of the FSUT was better than 9 nm. It provides an effective new anti-inclination, anti-scattering, and anti-reflectivity method for accurately measuring steep freeform surfaces.

Keywords: normal transverse; steep freeform; differential confocal; method; measurement; freeform

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.