LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical data transmission through highly dynamic and turbid water using dynamic scaling factors and single-pixel detector.

Photo by a2eorigins from unsplash

Free-space optical data transmission through non-static scattering media, e.g., dynamic and turbid water, is challenging. In this paper, we propose a new method to realize high-fidelity and high-robustness free-space optical… Click to show full abstract

Free-space optical data transmission through non-static scattering media, e.g., dynamic and turbid water, is challenging. In this paper, we propose a new method to realize high-fidelity and high-robustness free-space optical data transmission through highly dynamic and turbid water using a series of dynamic scaling factors to correct light intensities recorded by a single-pixel bucket detector. A fixed reference pattern is utilized to obtain the series of dynamic scaling factors during optical data transmission in free space. To verify the proposed method, different turbidity levels, different strengths of water-flow-induced turbulence and a laser with different wavelengths are studied in optical experiments. It is demonstrated that the proposed scheme is robust against water-flow-induced turbulence and turbid water, and high-fidelity free-space optical information transmission is realized at wavelengths of 658.0 nm and 520.0 nm. The proposed method could shed light on the development of high-fidelity and high-robustness free-space optical data transmission through highly dynamic and turbid water.

Keywords: water; turbid water; data transmission; transmission; dynamic turbid; optical data

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.