LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple resonant modes coupling enabled strong CD response in a chiral metasurface.

Photo from wikipedia

The chiral structures with strong circular dichroism (CD) response and narrow linewidth are desirable in chiral sensing, circularly-polarized light detection, and polarization imaging. Here, we theoretically proposed a hybrid chiral… Click to show full abstract

The chiral structures with strong circular dichroism (CD) response and narrow linewidth are desirable in chiral sensing, circularly-polarized light detection, and polarization imaging. Here, we theoretically proposed a hybrid chiral metasurface for differential absorption of circularly polarized light. Based on the multiple resonant modes coupling effect in a two-dimensional dielectric slab, it is realizable then to achieve a nearly perfect absorption for right circularly polarized light and simultaneously reflects 90% of left circularly polarized light, suggesting the generation of strong CD of 0.886 within a narrowly spectral linewidth of 4.53 nm. The multipole analysis reveals that the electric dipole, the magnetic dipole, and the electric quadrupole make dominant contributions to chiral absorption and the high CD response in this metsurface. The excitation of guided mode resonance enhances the ability of this metasurface to absorb electric field. Moreover, the optical chirality response can be further manipulated through the geometry features. These findings pave a powerful way to realize the narrowing and strong CD platform for single-band and multiband chirality behaviors.

Keywords: polarized light; multiple resonant; resonant modes; chiral metasurface; response; circularly polarized

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.