LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-local polarization alignment and control in fibers using feedback from correlated measurements of entangled photons.

Photo by makcedward from unsplash

Quantum measurements that use the entangled photons' polarization to encode quantum information require calibration and alignment of the measurement bases between spatially separate observers. Because of the changing birefringence in… Click to show full abstract

Quantum measurements that use the entangled photons' polarization to encode quantum information require calibration and alignment of the measurement bases between spatially separate observers. Because of the changing birefringence in optical fibers arising from temperature fluctuations or external mechanical vibrations, the polarization state at the end of a fiber channel is unpredictable and time-varying. Polarization tracking and stabilization methods originally developed for classical optical communications cannot be applied to polarization-entangled photons, where the separately detected photons are statistically unpolarized, yet quantum mechanically correlated. We report here a fast method for automatic alignment and dynamic tracking of the polarization measurement bases between spatially separated detectors. The system uses the Nelder-Mead simplex method to minimize the observed coincidence rate between non-locally measured entangled photon pairs, without relying on classical wavelength-multiplexed pilot tones or temporally interleaved polarized photons. Alignment and control is demonstrated in a 7.1 km deployed fiber loop as well as in a controlled drifting scenario.

Keywords: alignment control; non local; entangled photons; polarization

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.