LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical frequency domain reflectometry shape sensing using an extruded optical fiber triplet for intra-arterial guidance.

Photo from wikipedia

Intra-arterial catheter guidance is instrumental to the success of minimally invasive procedures, such as percutaneous transluminal angioplasty. However, traditional device tracking methods, such as electromagnetic or infrared sensors, exhibits drawbacks… Click to show full abstract

Intra-arterial catheter guidance is instrumental to the success of minimally invasive procedures, such as percutaneous transluminal angioplasty. However, traditional device tracking methods, such as electromagnetic or infrared sensors, exhibits drawbacks such as magnetic interference or line of sight requirements. In this work, shape sensing of bends of different curvatures and lengths is demonstrated both asynchronously and in real-time using optical frequency domain reflectometry (OFDR) with a polymer extruded optical fiber triplet with enhanced backscattering properties. Simulations on digital phantoms showed that reconstruction accuracy is of the order of the interrogator's spatial resolution (millimeters) with sensing lengths of less than 1 m and a high SNR.

Keywords: intra arterial; frequency domain; optical frequency; extruded optical; domain reflectometry; shape sensing

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.