LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable wideband-narrowband switchable absorber based on vanadium dioxide and graphene.

Photo from wikipedia

A functionally tunable and absorption-tunable terahertz (THz) metamaterial absorber based on vanadium dioxide (VO2) and graphene is proposed and verified numerically. Based on phase transition properties of VO2 and tunability… Click to show full abstract

A functionally tunable and absorption-tunable terahertz (THz) metamaterial absorber based on vanadium dioxide (VO2) and graphene is proposed and verified numerically. Based on phase transition properties of VO2 and tunability of graphene, the switching performance between ultra-broadband and narrow-band near-perfect absorption can be achieved. We simulate and analyze the characteristics of the constructed model by finite element analysis. Theoretical calculations show that when VO2 is in the metallic state and the graphene Fermi energy is 0 eV, the designed absorber can perform ultra-broadband absorption. The absorber achieves greater than 95% absorption in the 2.85 - 10THz range. When VO2 is in the insulating state and the graphene Fermi energy is 0.7 eV, more than 99.5% absorption can be achieved at 2.3 THz. The absorption rate can be tuned by changing the conductivity of VO2 and the Fermi energy of graphene. Moreover, the proposed absorber displays good polarization insensitivity and wide incident angle stability. The design may have potential applications in terahertz imaging, sensing, electromagnetic shielding and so on.

Keywords: graphene; based vanadium; vanadium dioxide; absorption; absorber based

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.