LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diverse lateral shifts of beams in non-Hermitian waveguide arrays.

Photo from wikipedia

Non-Hermitian systems have attracted considerable attention in optics due to the rich physics introduced by the existence of real spectra and exceptional points (EPs), which is exploited in lasers, optical… Click to show full abstract

Non-Hermitian systems have attracted considerable attention in optics due to the rich physics introduced by the existence of real spectra and exceptional points (EPs), which is exploited in lasers, optical sensors and on-chip manipulations of light. Here, focusing on the dynamics of beams in non-Hermitian waveguide arrays supporting a ring of EPs (exceptional ring) and 3rd-order EPs, we theoretically demonstrate that the center of energy of a beam prepared around an eigenstate of the waveguide array near EPs could exhibit non-zero shifts in the lateral direction during its propagation. When the initial state of the beam prepared around an eigenstate inside (outside) the exceptional ring with the imaginary (real) eigenvalue, the lateral shifts of the beams are manifested by the non-oscillating (Zitterbewegung-like) motions, which are robust to the perturbations of coupling coefficients between waveguides. Remarkably, the amplitude of the non-oscillating shift is dependent on a non-Hermitian Berry connection (U(1) gauge invariance). It contradicts the conventional wisdom that the Berry connection cannot induce the dynamic effect. Furthermore, near the high-order EPs, the initial-state-dependent lateral shifts of the beams present diversity, such as multifrequencies and destructive interferences. The counterintuitive lateral shifts of the beams stem from the non-orthogonal nature of eigenstate of the non-Hermitian systems, which may open a gateway towards the non-Hermitian beam dynamics and manipulations of beams.

Keywords: beams non; non hermitian; shifts beams; hermitian waveguide; lateral shifts; waveguide arrays

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.