LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly sensitive terahertz fingerprint sensing based on the quasi-guided modes in a distorted photonic lattice.

Photo from wikipedia

Using photonic structures resonating at the characteristic absorption frequency of the target molecules is a widely-adopted approach to enhance the absorption and improve the sensitivity in many spectral regions. Unfortunately,… Click to show full abstract

Using photonic structures resonating at the characteristic absorption frequency of the target molecules is a widely-adopted approach to enhance the absorption and improve the sensitivity in many spectral regions. Unfortunately, the requirement of accurate spectral matching poses a big challenge for the structure fabrication, while active tuning of the resonance for a given structure using external means like the electric gating significantly complicates the system. In this work, we propose to circumvent the problem by making use of quasi-guided modes which feature both ultra-high Q factors and wavevector-dependent resonances over a large operating bandwidth. These modes are supported in a distorted photonic lattice, whose band structure is formed above the light line due to the band-folding effect. The advantage and flexibility of this scheme in terahertz sensing are elucidated and exemplified by using a compound grating structure on a silicon slab waveguide to achieve the detection of a nanometer scale α-lactose film. The spectral matching between the leaky resonance and the α-lactose absorption frequency at 529.2 GHz by changing the incident angle is demonstrated using a flawed structure which exhibits a detuned resonance at normal incidence. Based on the high dependence of the transmittance at the resonance on the thickness of α-lactose, our results show it is possible to achieve an exclusive detection of α-lactose with the effective sensing of thickness as small as 0.5 nm.

Keywords: photonic lattice; structure; guided modes; resonance; quasi guided; distorted photonic

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.