LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Full-space wavefront manipulation enabled by asymmetric photonic spin-orbit interactions.

Photo by joelfilip from unsplash

Optical metasurfaces empower complete wavefront manipulation of electromagnetic waves and have been found in extensive applications, whereas most of them work in either transmission or reflection space. Here, we demonstrate… Click to show full abstract

Optical metasurfaces empower complete wavefront manipulation of electromagnetic waves and have been found in extensive applications, whereas most of them work in either transmission or reflection space. Here, we demonstrate that two independent and arbitrary phase profiles in transmission and reflection spaces could be produced by a monolayer all-dielectric metasurface based on the asymmetric photonic spin-orbit interactions, realizing full-space wavefront independent manipulation. Furthermore, the supercell-based non-local approach is employed to suppress crosstalk between adjacent nanopillars in one supercell for broadband and high-efficiency wavefront manipulation in full space. Compared with the conventional unit cell-based local approach, such a method could improve efficiency about 10%. As a proof of concept, two metadevices are designed, in which the maximum diffraction efficiencies are ∼95.53%/∼74.07% within the wavelength range of 1500-1600 nm in reflection/transmission space under circularly polarized light incidence. This configuration may offer an efficient way for 2π-space holographic imaging, augmented reality, virtual reality technologies, three-dimensional imaging, and so forth.

Keywords: asymmetric photonic; wavefront manipulation; space; full space; wavefront

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.