LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-flexibility and high-accuracy phase delay calibration method for MEMS-based fringe projection systems.

Photo from wikipedia

Microelectromechanical system (MEMS) mirror based laser beam scanning (LBS) projectors for fringe projection profilometry (FPP) are becoming increasingly popular attributing to their small size and low cost. However, the initial… Click to show full abstract

Microelectromechanical system (MEMS) mirror based laser beam scanning (LBS) projectors for fringe projection profilometry (FPP) are becoming increasingly popular attributing to their small size and low cost. However, the initial phase of the scanning MEMS mirror employed in an LBS projector may vary over time, resulting in unstable and distorted fringe patterns. The distorted fringe patterns will largely decrease the accuracy of the three-dimensional (3D) topographic reconstruction. In this paper, an efficient phase delay calibration method based on a unique fringe projection sequence and a corresponding image processing algorithm is proposed. The proposed method can compensate the phase uncertainty and variation with no need to add any extra components. One LBS projector has been constructed using a uniaxial electrostatic MEMS mirror that has a mirror size of 2.5 mm × 2.5 mm and a scanning field of view of 60 ∘ at its resonance of 1523 Hz. 3D reconstruction experiments are conducted to study how the 3D reconstruction results are affected by the phase delay. The standard deviation of a sphere reconstruction is improved from 2.05 mm to 0.20 mm after the positive phase delay deviation of 5 μs is compensated using this new calibration method.

Keywords: calibration method; phase delay; fringe projection; phase

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.