LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-period D-fiber grating based robust and efficient bidirectional coupler for whispering gallery mode excitation.

Photo from wikipedia

A robust and efficient bidirectional coupler for whispering gallery mode (WGM) excitation based on a long-period grating (LPG) inscribed in D-fiber is theoretically and experimentally demonstrated. The LPG coupling the… Click to show full abstract

A robust and efficient bidirectional coupler for whispering gallery mode (WGM) excitation based on a long-period grating (LPG) inscribed in D-fiber is theoretically and experimentally demonstrated. The LPG coupling the fundamental core mode to the forward propagating cladding modes according to the phase-matching condition not only enhances the evanescent field of the fiber but also selectively excites the WGM in a wavelength band of interest. Experimental results show that a maximum resonance contrast as high as 10.5 dB and a quality factor (Q-factor) on the order of 104 can be achieved in an LPG coupled spherical silica WGM resonator with a diameter of 242 µm, where the LPG with a pitch of 680 µm is fabricated by arc-discharging in a side-polished D-fiber with a maximum polishing depth of 56 µm. In addition to high robustness and efficiency, such an LPG-based WGM coupler also demonstrates bidirectionality, i.e., it is independent of the injection direction of the input light, which provides a reliable and flexible fiber coupler for the WGM resonator based practical applications.

Keywords: coupler; efficient bidirectional; robust efficient; fiber; bidirectional coupler; mode

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.