LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a deviated focusing-based optical coherence microscope with a variable depth of focus for high-resolution imaging.

Photo by martindorsch from unsplash

The aim of this study was to develop an optically deviated focusing-based variable depth-of-focus (DOF) oriented optical coherence microscopy (OCM) system to improve the DOF in high-resolution and precise focused… Click to show full abstract

The aim of this study was to develop an optically deviated focusing-based variable depth-of-focus (DOF) oriented optical coherence microscopy (OCM) system to improve the DOF in high-resolution and precise focused imaging. In this study, an approach of varying beam diameter using deviated focusing was employed in the sample arm to enhance the DOF and to confirm precise focusing in OCM imaging. The optically deviated focusing technique was used to vary the focal point and DOF by altering the sample arm beam. The efficacy of the variable DOF imaging approach utilizing an optimized sample arm was confirmed by tissue-level imaging, where OCM images with varying DOF were obtained using deviated focusing. Experimentally confirmed lateral resolution of 2.19 µm was sufficient for the precise non-invasive visualization of abnormalities of fruit specimens. Thus, the proposed variable DOF-OCM system can be an alternative for precisely focused, high-resolution, and variable DOF imaging by improving the DOF in minimum lateral resolution variation.

Keywords: dof; high resolution; deviated focusing; focusing based; variable depth

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.