LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reduction of thermal effects in a 2.7-µm Er:Y2O3 ceramic laser with annular pumping.

Photo from wikipedia

Reduction of thermal effects is a challenging aspect for power scaling of 2.7-µm bulk Er-lasers due to the large quantum defect when pumping at ∼ 0.97 µm. Here, we demonstrate… Click to show full abstract

Reduction of thermal effects is a challenging aspect for power scaling of 2.7-µm bulk Er-lasers due to the large quantum defect when pumping at ∼ 0.97 µm. Here, we demonstrate that thermal effects in an Er:Y2O3 ceramic laser can be significantly reduced pumping by an annular beam, thus improving the continuous-wave (CW) laser performance in the 3-µm spectral range. The excitation conditions of the TEM00 mode were determined theoretically by taking into account the propagation characteristics of the annular pump beam. For a comparison, the temperature and stress distributions are at first theoretically studied with three different pump configurations. In the experiment, output power of the Er:Y2O3 ceramic laser improved by ∼ 60% by changing the pump beam from coventional quasi-top-hat to a designed annular one. This work, as a proof-of-principle study, indicates the potential of power scaling of the 2.7-µm bulk Er-lasers pumping with an annular beam.

Keywords: ceramic laser; effects y2o3; y2o3 ceramic; thermal effects; reduction thermal

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.