LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inverse design of an on-chip optical response predictor enabled by a deep neural network.

Photo from wikipedia

We proposed inverse-designed nanophotonic waveguide devices which have the desired optical responses in the wide band of 1450-1650 nm. The proposed devices have an ultra-compact size of just 1.5 µm × 3.0 µm… Click to show full abstract

We proposed inverse-designed nanophotonic waveguide devices which have the desired optical responses in the wide band of 1450-1650 nm. The proposed devices have an ultra-compact size of just 1.5 µm × 3.0 µm and are designed on a silicon-on-insulator (SOI) waveguide platform. Individual nano-pixels with dimensions of 150 nm × 150 nm were made of either silicon or silicon dioxide, and the materials for the 200 total cells were determined using a trained deep neural network. While training the two networks, the hyperparameter optimization method was applied to make the training process efficient. We then fabricated the proposed devices using a CMOS-compatible fabrication process, and experimentally verified the fabricated device performance.

Keywords: neural network; design chip; deep neural; chip optical; inverse design

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.