LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatiotemporal mode-locked fiber laser based on dual-resonance coupling long-period fiber grating.

Photo by erol from unsplash

Spatiotemporal mode-locked (STML) fiber lasers have become an excellent platform in nonlinear optics research due to the rich nonlinear evolution process. In order to overcome modal walk-off and realize phase… Click to show full abstract

Spatiotemporal mode-locked (STML) fiber lasers have become an excellent platform in nonlinear optics research due to the rich nonlinear evolution process. In order to overcome modal walk-off and realize phase locking of different transverse modes, it is usually crucial to reduce the modal group delay difference in the cavity. In this paper, we use long-period fiber grating (LPFG) to compensate the large modal dispersion and differential modal gain in the cavity, realizing the spatiotemporal mode-locking in step-index fibers cavity. The LPFG inscribed in few-mode fiber could induce strong mode coupling, which has wide operation bandwidth based on dual-resonance coupling mechanism. By using dispersive Fourier transform involved intermodal interference, we show that there is a stable phase difference between the transverse modes constituting the spatiotemporal soliton. These results would be beneficial for the study of spatiotemporal mode-locked fiber lasers.

Keywords: long period; fiber; mode locked; period fiber; spatiotemporal mode; mode

Journal Title: Optics express
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.