LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

External-cavity diode laser-based near-infrared broadband laser heterodyne radiometer for remote sensing of atmospheric CO2.

Photo from wikipedia

A near-infrared broadband (1500-1640 nm) laser heterodyne radiometer (LHR) with a tunable external-cavity diode laser as the local oscillator is developed and the relative transmittance, which represents the absolute relationship between… Click to show full abstract

A near-infrared broadband (1500-1640 nm) laser heterodyne radiometer (LHR) with a tunable external-cavity diode laser as the local oscillator is developed and the relative transmittance, which represents the absolute relationship between the measured spectral signals and the atmospheric transmittance, is derived. High-resolution (0.0087 cm-1) LHR spectra in the spectral region of 6248.5-6256 cm-1 were recorded for the observation of atmospheric CO2. Combined with the relative transmittance, the preprocessed measured LHR spectra, the optimal estimation method, and the Python scripts for computational atmospheric spectroscopy, the column-averaged dry-air mixing ratio of CO2 of 409.09 ± 8 ppmv in Dunkirk, France on February 23, 2019, was retrieved, which is consistent with GOSAT and TCCON data. The near-infrared external-cavity LHR demonstrated in the present work has a high potential for use in developing a robust, broadband, unattended, and all-fiber LHR for spacecraft and ground-based atmospheric sensing that offers more channel selection for inversion.

Keywords: external cavity; infrared broadband; near infrared; laser

Journal Title: Optics express
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.