In this contribution, we numerically investigate second harmonic generation in double-layered lithium niobate on the insulator platform by means of the modal phase matching. The modal dispersion of the ridge… Click to show full abstract
In this contribution, we numerically investigate second harmonic generation in double-layered lithium niobate on the insulator platform by means of the modal phase matching. The modal dispersion of the ridge waveguides at the C waveband of optical fiber communication is calculated numerically and analyzed. Modal phase matching can be achieved by changing the geometric dimensions of the ridge waveguide. The phase-matching wavelength and conversion efficiencies versus the geometric dimensions in the modal phase-matching process are investigated. We also analyze the thermal-tuning ability of the present modal phase matching scheme. Our results show that highly efficient second harmonic generation can be realized by the modal phase matching in the double-layered thin film lithium niobate ridge waveguide.
               
Click one of the above tabs to view related content.