LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology-dependent resonance induced optical forces in a multiple-sphere system.

Photo from wikipedia

Optical fields and forces can be greatly enhanced for a microparticle when the whispering gallery modes (WGMs) are excited. In this paper, by solving the scattering problem using the generalized… Click to show full abstract

Optical fields and forces can be greatly enhanced for a microparticle when the whispering gallery modes (WGMs) are excited. In this paper, by solving the scattering problem using the generalized Mie theory, the morphology-dependent resonances (MDRs) and resonant optical forces derived from the coherent coupling of WGMs are investigated in multiple-sphere systems. When the spheres approach each other, the bonding and antibonding modes of MDRs emerge and correspond to the attractive and repulsive forces, respectively. More importantly, the antibonding mode is good at propagating light forward, while the optical fields decay rapidly for the bonding mode. Moreover, the bonding and antibonding modes of MDRs in the PT-symmetric system can persist only when the imaginary part of the refractive index is small enough. Interestingly, it is also shown that for a PT-symmetric structure, only a minor imaginary part of the refractive index is required to generate a significant pulling force at MDRs, making the whole structure move against the light propagation direction. Our work deepens the understanding of the collective resonance behavior of multiple spheres and paves the way for potential applications in particle transportation, non-Hermitian systems, integrated optical devices, etc.

Keywords: system; optical forces; morphology dependent; resonance; multiple sphere

Journal Title: Optics express
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.