LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical and experimental investigation of a dispersive optoelectronic oscillator for chaotic time-delay signature suppression.

Photo by jontyson from unsplash

Chaos generation from a novel single-loop dispersive optoelectronic oscillator (OEO) with a broadband chirped fiber Bragg grating (CFBG) is numerically and experimentally investigated. The CFBG has much broader bandwidth than… Click to show full abstract

Chaos generation from a novel single-loop dispersive optoelectronic oscillator (OEO) with a broadband chirped fiber Bragg grating (CFBG) is numerically and experimentally investigated. The CFBG has much broader bandwidth than the chaotic dynamics such that its dispersion effect rather than filtering effect dominates the reflection. The proposed dispersive OEO exhibits chaotic dynamics when sufficient feedback strength is guaranteed. Suppression of chaotic time-delay signature (TDS) is observed as the feedback strength increases. The TDS can be further suppressed as the amount of grating dispersion increases. Without compromising bandwidth performance, our proposed system extends the parameter space of chaos, enhances the robustness to modulator bias variation, and improves TDS suppression by at least five times comparing to the classical OEO. Experimental results qualitatively agree well with numerical simulations. In addition, the advantage of dispersive OEO is further verified by experimentally demonstrating random bit generation with tunable rate up to 160 Gbps.

Keywords: chaotic time; time delay; delay signature; dispersive optoelectronic; optoelectronic oscillator; suppression

Journal Title: Optics express
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.