LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compact, broadband, and low-loss power splitters using MZI based on Bézier bends.

Photo by 20164rhodi from unsplash

We experimentally demonstrate wavelength-independent couplers (WICs) based on an asymmetric Mach-Zehnder interferometer (MZI) on a monolithic silicon-photonics platform in a commercial, 300-mm, CMOS foundry. We compare the performance of splitters… Click to show full abstract

We experimentally demonstrate wavelength-independent couplers (WICs) based on an asymmetric Mach-Zehnder interferometer (MZI) on a monolithic silicon-photonics platform in a commercial, 300-mm, CMOS foundry. We compare the performance of splitters based on MZIs consisting of circular and 3rd order (cubic) Bézier bends. A semi-analytical model is constructed in order to accurately calculate each device's response based on their specific geometry. The model is successfully tested via 3D-FDTD simulations and experimental characterization. The obtained experimental results demonstrate uniform performance across different wafer sites for various target splitting ratios. We also confirm the superior performance of the Bézier bend-based structure, compared to the circular bend-based structure both in terms of insertion loss (0.14 dB), and performance consistency throughout different wafer dies. The maximum deviation of the optimal device's splitting ratio is 0.6%, over a wavelength span of 100 nm. Moreover, the devices have a compact footprint of 36.3 × 3.8 μ m 2.

Keywords: broadband low; zier bends; low loss; compact broadband; performance

Journal Title: Optics express
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.