We experimentally demonstrate wavelength-independent couplers (WICs) based on an asymmetric Mach-Zehnder interferometer (MZI) on a monolithic silicon-photonics platform in a commercial, 300-mm, CMOS foundry. We compare the performance of splitters… Click to show full abstract
We experimentally demonstrate wavelength-independent couplers (WICs) based on an asymmetric Mach-Zehnder interferometer (MZI) on a monolithic silicon-photonics platform in a commercial, 300-mm, CMOS foundry. We compare the performance of splitters based on MZIs consisting of circular and 3rd order (cubic) Bézier bends. A semi-analytical model is constructed in order to accurately calculate each device's response based on their specific geometry. The model is successfully tested via 3D-FDTD simulations and experimental characterization. The obtained experimental results demonstrate uniform performance across different wafer sites for various target splitting ratios. We also confirm the superior performance of the Bézier bend-based structure, compared to the circular bend-based structure both in terms of insertion loss (0.14 dB), and performance consistency throughout different wafer dies. The maximum deviation of the optimal device's splitting ratio is 0.6%, over a wavelength span of 100 nm. Moreover, the devices have a compact footprint of 36.3 × 3.8 μ m 2.
               
Click one of the above tabs to view related content.