The morphology and dynamics of label-free tissues can be exploited by sample-induced changes in the optical field from quantitative phase imaging. Its sensitivity to subtle changes in the optical field… Click to show full abstract
The morphology and dynamics of label-free tissues can be exploited by sample-induced changes in the optical field from quantitative phase imaging. Its sensitivity to subtle changes in the optical field makes the reconstructed phase susceptible to phase aberrations. We import variable sparse splitting framework on quantitative phase aberration extraction based on alternating direction aberration free method. The optimization and regularization in the reconstructed phase are decomposed into object terms and aberration terms. By formulating the aberration extraction as a convex quadratic problem, the background phase aberration can be fast and directly decomposed with the specific complete basis functions such as Zernike or standard polynomials. Faithful phase reconstruction can be obtained by eliminating global background phase aberration. The aberration-free two-dimensional and three-dimensional imaging experiments are demonstrated, showing the relaxation of the strict alignment requirements for the holographic microscopes.
               
Click one of the above tabs to view related content.