Structured beams have played an important role in many fields due to their rich spatial characteristics. The microchip cavity with a large Fresnel number can directly generate structured beams with… Click to show full abstract
Structured beams have played an important role in many fields due to their rich spatial characteristics. The microchip cavity with a large Fresnel number can directly generate structured beams with complex spatial intensity distribution, which provides convenience for further exploring the formation mechanism of structured beams and realizing low-cost applications. In this article, theoretical and experimental studies are carried out on complex structured beams directly generated by the microchip cavity. It is demonstrated that the complex beams generated by the microchip cavity can be expressed by the coherent superposition of whole transverse eigenmodes within the same order, thus forming the eigenmode spectrum. The mode component analysis of complex propagation-invariant structured beams can be realized by the degenerate eigenmode spectral analysis described in this article.
               
Click one of the above tabs to view related content.