LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous turbulence mitigation and channel demultiplexing for two 100  Gbit/s orbital-angular-momentum multiplexed beams by adaptive wavefront shaping and diffusing.

Photo by hannahrdg from unsplash

We experimentally demonstrate simultaneous turbulence mitigation and channel demultiplexing in a 200 Gbit/s orbital-angular-momentum (OAM) multiplexed link by adaptive wavefront shaping and diffusing (WSD) the light beams. Different realizations of… Click to show full abstract

We experimentally demonstrate simultaneous turbulence mitigation and channel demultiplexing in a 200 Gbit/s orbital-angular-momentum (OAM) multiplexed link by adaptive wavefront shaping and diffusing (WSD) the light beams. Different realizations of two emulated turbulence strengths (the Fried parameter ${r_0} = 0.4,\,1.0\;{\rm mm}$r0=0.4,1.0mm) are mitigated. The experimental results show the following. (1) Crosstalk between OAM $l = + 1$l=+1 and $l = - 1$l=-1 modes can be reduced by $ {\gt} {10.0}$>10.0 and $ {\gt} {5.8}\;{\rm dB}$>5.8dB, respectively, under the weaker turbulence (${r_0} = 1.0\;{\rm mm}$r0=1.0mm); crosstalk is further improved by $ {\gt} {17.7}$>17.7 and $ {\gt} {19.4}\;{\rm dB}$>19.4dB, respectively, under most realizations in the stronger turbulence (${r_0} = 0.4\;{\rm mm}$r0=0.4mm). (2) The optical signal-to-noise ratio penalties for the bit error rate performance are measured to be ${\sim}{0.7}$∼0.7 and ${\sim}{1.6}\;{\rm dB}$∼1.6dB under weaker turbulence, while measured to be ${\sim}{3.2}$∼3.2 and ${\sim}{1.8}\;{\rm dB}$∼1.8dB under stronger turbulence for OAM $l = + 1$l=+1 and $l = - 1$l=-1 mode, respectively.

Keywords: simultaneous turbulence; gbit orbital; channel demultiplexing; turbulence; mitigation channel; turbulence mitigation

Journal Title: Optics letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.