Photonic quantum states generated from atomic systems play prominent roles in long-distance quantum networks and scalable quantum communication, because entangled photon pairs from atomic ensembles possess a universal identity and… Click to show full abstract
Photonic quantum states generated from atomic systems play prominent roles in long-distance quantum networks and scalable quantum communication, because entangled photon pairs from atomic ensembles possess a universal identity and narrow spectral bandwidth for quantum repeaters. In this study, we propose and demonstrate a novel, to the best of our knowledge, method for the joint spectral intensity measurement of narrowband continuous wave (CW)-mode photon pairs from a warm atomic ensemble using stimulated emission and beat interferometry for the first time. Our approach offers the advantage of sub-megahertz resolution, absolute optical frequency measurements with megahertz-level accuracy, fast collection time, and high signal-to-noise ratio; thus, our method can find important applications in the characterization of narrowband photon pairs generated from sources including atoms and artificially structured material.
               
Click one of the above tabs to view related content.