Krypton planar laser-induced fluorescence (Kr PLIF) was demonstrated at a repetition rate of 100 kHz. To achieve this increased rate, a custom injection-seeded optical parametric oscillator was built to efficiently… Click to show full abstract
Krypton planar laser-induced fluorescence (Kr PLIF) was demonstrated at a repetition rate of 100 kHz. To achieve this increased rate, a custom injection-seeded optical parametric oscillator was built to efficiently convert the 355 nm output of a high-energy, high-repetition-rate nanosecond burst-mode laser to 212.56 nm to excite Kr from the ground to the 5p[1/2]0 electronic state. Successful tracking of flow structures and mixture fraction was demonstrated using detection speeds 100 times greater than previously attained with a femtosecond laser source. The increase in repetition rate makes time-resolved Kr PLIF relevant for high-speed flows in particular.
               
Click one of the above tabs to view related content.