We explored generation of high-energy nanosecond short pulses in the mid-IR wavelength range using 30-70-µm-core Er:ZBLAN fiber amplifiers. The highest energies achieved were ∼0.7mJ at 2.72 µm in 11.5-ns-long pulses,… Click to show full abstract
We explored generation of high-energy nanosecond short pulses in the mid-IR wavelength range using 30-70-µm-core Er:ZBLAN fiber amplifiers. The highest energies achieved were ∼0.7mJ at 2.72 µm in 11.5-ns-long pulses, with the corresponding peak power of 60.3 kW, obtained with a 70-µm-diameter core fiber amplifier pumped at 976 nm and seeded by a KTiOAsO4-based optical parametric oscillator/optical parametric amplifier system. To the best of our knowledge, these pulse energies are the highest achieved to date from mid-IR fiber lasers at longer than 2-µm wavelengths with nanosecond pulses. The achieved highest pulse energies were limited by the surface damage of unprotected fiber output facets.
               
Click one of the above tabs to view related content.