LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Demonstration of 0.67-mJ and 10-ns high-energy pulses at 2.72  µm from large core Er:ZBLAN fiber amplifiers.

Photo by mbrunacr from unsplash

We explored generation of high-energy nanosecond short pulses in the mid-IR wavelength range using 30-70-µm-core Er:ZBLAN fiber amplifiers. The highest energies achieved were ∼0.7mJ at 2.72 µm in 11.5-ns-long pulses,… Click to show full abstract

We explored generation of high-energy nanosecond short pulses in the mid-IR wavelength range using 30-70-µm-core Er:ZBLAN fiber amplifiers. The highest energies achieved were ∼0.7mJ at 2.72 µm in 11.5-ns-long pulses, with the corresponding peak power of 60.3 kW, obtained with a 70-µm-diameter core fiber amplifier pumped at 976 nm and seeded by a KTiOAsO4-based optical parametric oscillator/optical parametric amplifier system. To the best of our knowledge, these pulse energies are the highest achieved to date from mid-IR fiber lasers at longer than 2-µm wavelengths with nanosecond pulses. The achieved highest pulse energies were limited by the surface damage of unprotected fiber output facets.

Keywords: high energy; core zblan; zblan fiber; fiber amplifiers

Journal Title: Optics letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.