LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ink-jet printed, blended polymer-based microdisk resonators for controlling non-specific adsorption of biomolecules.

Photo from wikipedia

A blended FC-V-50 and TZ-001 polymer-based microdisk laser was fabricated by the ink-jet printing method and used for biosensing applications. The FC-V-50 polymer has a negative charge due to the… Click to show full abstract

A blended FC-V-50 and TZ-001 polymer-based microdisk laser was fabricated by the ink-jet printing method and used for biosensing applications. The FC-V-50 polymer has a negative charge due to the presence of carboxyl functional groups, and the TZ-001 polymer has a positive charge due to the tertiary amine group at a pH of seven. In biosensing applications, non-specific adsorption due to opposite charges of biomolecules and microdisk surfaces can adversely affect the performance of the biosensor. By mixing FC-V-50 and TZ-001 polymers in different ratios, the microdisk surface charge was controlled, and the non-specific adsorption of bovine serum albumin and lysozyme was studied. In addition, the label-free biosensing of streptavidin was demonstrated using a blended polymer-based microdisk laser. This work reports, to the best of our knowledge, the first demonstration of a blended polymer microdisk laser for controlling the non-specific adsorption of biomolecules.

Keywords: non specific; polymer based; specific adsorption; based microdisk

Journal Title: Optics letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.