LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mid-infrared germanium photonic crystal cavity.

Photo from wikipedia

The mid-infrared (MIR) spectral range holds significant potential for spectroscopic and sensing applications because it encompasses the fingerprint region that unveils the vibrational and rotational signatures of molecules. CMOS-compatible on-chip… Click to show full abstract

The mid-infrared (MIR) spectral range holds significant potential for spectroscopic and sensing applications because it encompasses the fingerprint region that unveils the vibrational and rotational signatures of molecules. CMOS-compatible on-chip devices that can achieve strong light-matter interaction in the entire fingerprint region are considered a promising way for such applications, but remain unprecedented. Here we present an on-chip MIR germanium photonic crystal cavity that covers the entire fingerprint region. This is made possible by harnessing a homemade air-cladding germanium platform. Our MIR device creates a new avenue toward integrated nonlinear optics and on-chip biochemical sensing in the fingerprint region.

Keywords: germanium; germanium photonic; fingerprint region; photonic crystal; mid infrared; crystal cavity

Journal Title: Optics letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.