LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Demonstration of terabit coherent on-chip optical interconnects employing mode-division multiplexing.

Photo from wikipedia

We experimentally demonstrate a net capacity per wavelength of 1.23 Tb/s with 30 GBaud 16-ary quadrature amplitude modulation (16-QAM) mode-division multiplexing (MDM) signals over a single silicon-on-insulator (SOI) multimode waveguide… Click to show full abstract

We experimentally demonstrate a net capacity per wavelength of 1.23 Tb/s with 30 GBaud 16-ary quadrature amplitude modulation (16-QAM) mode-division multiplexing (MDM) signals over a single silicon-on-insulator (SOI) multimode waveguide for optical interconnects employing $11 \times 11$ multiple-in-multiple-out (MIMO) digital signal processing. In order to simplify the receiver architecture for coherent optical interconnects, we further propose and evaluate an on-chip self-homodyne coherent detection (SHCD) scheme. In the experiment, 30 Gbaud quadrature phase shift keying (QPSK) signals carried by 10 waveguide modes are successfully recovered with bit error rates (BERs) below 7% forward error correction (FEC) threshold using the pilot tone delivered by ${{\rm TE}_0}$ mode as a local oscillator. Around 10% penalty on error vector magnitude (EVM) is observed due to modal cross talk compared to homodyne detection.

Keywords: optical interconnects; mode division; division multiplexing; interconnects employing

Journal Title: Optics letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.