We study the formation of spatially dependent electromagnetically induced transparency (EIT) patterns from pairs of Laguerre-Gauss (LG) modes in an ensemble of cold interacting Rydberg atoms. The EIT patterns can… Click to show full abstract
We study the formation of spatially dependent electromagnetically induced transparency (EIT) patterns from pairs of Laguerre-Gauss (LG) modes in an ensemble of cold interacting Rydberg atoms. The EIT patterns can be generated when two-photon detuning does not compensate for the Rydberg level energy shift induced by van der Waals interaction. Depending on the topological numbers of each LG mode, we can pattern dark and bright Ferris-wheel-like structures in the absorption profile with tunable barriers between sites, providing confinement of Rydberg atoms in transverse direction while rendering them transparent to light at specific angular positions. We also show how the atomic density may affect the azimuthal modulation of the absorption profile.
               
Click one of the above tabs to view related content.