LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-dimensional inverse synthetic aperture lidar imaging for long-range spinning targets.

Photo from wikipedia

We present a three-dimensional (3D) imaging method for long-range spinning targets. This method acquires multi-angle two-dimensional (2D) images of spinning targets by the inverse synthetic aperture lidar (ISAL) imaging technique.… Click to show full abstract

We present a three-dimensional (3D) imaging method for long-range spinning targets. This method acquires multi-angle two-dimensional (2D) images of spinning targets by the inverse synthetic aperture lidar (ISAL) imaging technique. The 3D distribution of the scattering coefficients of a target has a mapping relationship with the series of 2D images. This mapping is analyzed, and a 3D Hough transform is used to implement inverse mapping. The parameter space of the Hough transform is the estimation of the 3D distribution of the scattering coefficients. The 3D point spread function obtained by the method has narrow main lobe widths and sufficiently low side lobes to achieve high image quality, which is verified by computer simulations. In the simulations, the main lobe widths in the three dimensions are 0.29 cm, 0.29 cm, and 3.48 cm, respectively. In outdoor experiments, 3D images of targets at 1 km away from the lidar were obtained. The images clearly show the 3D shape of targets.

Keywords: three dimensional; spinning targets; range spinning; long range; inverse synthetic; synthetic aperture

Journal Title: Optics letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.