LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of large optical nonlinearity in gold nanoparticle films.

Photo from wikipedia

The Z-scan technique, using femtosecond (fs) laser pulses at 1480 nm laser pulses, was used to measure the nonlinear optical properties of gold (Au) nanoparticle (NP) films made by both nanosecond… Click to show full abstract

The Z-scan technique, using femtosecond (fs) laser pulses at 1480 nm laser pulses, was used to measure the nonlinear optical properties of gold (Au) nanoparticle (NP) films made by both nanosecond (ns) and fs pulsed laser deposition (PLD) in vacuum. At irradiance levels of 1×1012  Wm-2, the ns-PLD films displayed induced absorption with β=4×10-5  mW-1, and a negative lensing effect with n2=-4.7×10-11  m2 W-1 with somewhat smaller values for the fs-PLD films. These values of n2 imply an unphysically large change in the real part of the refractive index, demonstrating the need to take account of nonlinear changes of the Fresnel coefficients and multiple beam interference in Z-scan measurements on nanoscale films. Following this approach, the Z-scan observations were analyzed to determine the effective complex refractive index of the NP film at high irradiance. It appears that at high irradiance the NP film behaves as a metal, while at low irradiance it behaves as a low-loss dielectric. Thus, it is conjectured that, for high irradiance near the waist of the Z-scan laser beam, laser driven electron tunneling between NPs gives rise to metal-like optical behavior.

Keywords: irradiance; high irradiance; laser; gold nanoparticle; nanoparticle films

Journal Title: Optics letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.