LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrahigh-resolution optical vector analysis using fixed low-frequency electrical phase-magnitude detection.

Photo from wikipedia

An ultrahigh-resolution optical vector analyzer (OVA) is proposed and experimentally demonstrated based on microwave photonic frequency downconversion and fixed low-frequency electrical phase-magnitude detection. In the proposed OVA, two optical single-sideband… Click to show full abstract

An ultrahigh-resolution optical vector analyzer (OVA) is proposed and experimentally demonstrated based on microwave photonic frequency downconversion and fixed low-frequency electrical phase-magnitude detection. In the proposed OVA, two optical single-sideband (OSSB) signals are generated by two RF signals with a fixed frequency spacing. One propagates through an optical device under test (DUT) and is then combined with the other before entering to a low-speed photodetector. By photodetection, a low-frequency and frequency-fixed photocurrent carrying the spectral responses is achieved. Hence, a low-frequency electrical phase-magnitude detector is sufficient to extract the magnitude and phase. Sweeping the frequency of the RF signals, the spectral responses of the DUT can be obtained. As compared with the conventional OSSB- and optical double-sideband-based OVA, the proposed OVA avoids the use of high-speed photodetection and broadband electrical phase-magnitude detection. In addition, it is inherently immune to the measurement errors induced by high-order sidebands and has the capability of measuring arbitrary spectral responses. In an experiment, the proposed OVA is implemented based on an electrical phase-magnitude detector working at 10 MHz. The measurement resolution is 1 MHz, and the measurement range is larger than 45 GHz.

Keywords: phase magnitude; phase; frequency; low frequency; electrical phase

Journal Title: Optics letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.