LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators.

Photo by alvarordesign from unsplash

Chip-scale mode-locked dissipative Kerr solitons have been realized on various materials platforms, making it possible to achieve a miniature, highly coherent frequency comb source with high repetition rates. Aluminum nitride… Click to show full abstract

Chip-scale mode-locked dissipative Kerr solitons have been realized on various materials platforms, making it possible to achieve a miniature, highly coherent frequency comb source with high repetition rates. Aluminum nitride (AlN), an appealing nonlinear optical material having both Kerr (χ3), and Pockels (χ2) effects, has immerse potential for comb self-referencing without the need for external harmonic generators. However, cavity soliton states have not yet been achieved in AlN microresonators. Here, we demonstrate mode-locked Kerr cavity soliton generation in a crystalline AlN microring resonator. By utilizing ultrafast tuning of the pump frequency through single-sideband modulation, in combination with an optimized wavelength scan and pump power-ramp patterns, we can deterministically elongate a ∼400  ns short-lived soliton to a time span as long as we wish to hold it.

Keywords: crystalline aln; generation crystalline; soliton generation; cavity soliton

Journal Title: Optics letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.