LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-channel velocity multiplexing of single virus detection on an optofluidic chip.

Photo from academic.microsoft.com

Liquid-core waveguide-based optofluidic devices have proven to be valuable tools for analysis of biological samples in fluid. They have enabled single bioparticle sensitivity while maintaining in-plane detection via light-induced fluorescence.… Click to show full abstract

Liquid-core waveguide-based optofluidic devices have proven to be valuable tools for analysis of biological samples in fluid. They have enabled single bioparticle sensitivity while maintaining in-plane detection via light-induced fluorescence. The incorporation of multi-spot excitation with multimode interference (MMI) waveguides has enabled spatially and spectrally multiplexed detection of single viruses on an oxide-based optofluidic platform. Here, we introduce a new way of MMI-based multiplexing where multiple analysis channels are placed within a single multi-spot pattern. This stacked channel design enables both velocity and spectral multiplexing of single particles. The principle is demonstrated with differentiated detection of single H3N2 and H1N1 viruses on a polydimethylsiloxane platform.

Keywords: detection; multi channel; single virus; multiplexing single; channel velocity; velocity multiplexing

Journal Title: Optics letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.