LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

InGaN/GaN microdisks enabled by nanoporous GaN cladding.

The fabrication of nanoporous (NP) GaN is proposed as a generic technique to create out-of-plane index guiding for nitride microcavities. Compared to the conventional undercut technique, the proposed technique forms… Click to show full abstract

The fabrication of nanoporous (NP) GaN is proposed as a generic technique to create out-of-plane index guiding for nitride microcavities. Compared to the conventional undercut technique, the proposed technique forms uniformly a low-index NP-GaN layer beneath the entire microcavity. Therefore, it supports all cavity modes (with different cavity geometries), while the undercut technique only supports the modes that reside at the circumference of a circular microcavity. As a proof of concept, GaN microdisk cavities were fabricated with the NP-GaN as the bottom low-index medium. A cold cavity with Q>2,000 was reported under continuous-wave pumping. Lasing was demonstrated with threshold optical pumping power Pth∼60  kW/cm2 for the r=10  μm microdisk and Pth∼7  kW/cm2 for the r=50  μm microdisk. A rate equation analysis was performed to estimate the spontaneous coupling factor β∼1E-3, which was one order of magnitude higher than the previous report of a nitride microdisk laser with an InGaN quantum well active region. Therefore, NP GaN was proven to be a suitable replacement of the undercut technique for future nitride microcavities applications.

Keywords: technique; ingan gan; undercut technique; microdisks enabled; gan microdisks; nanoporous gan

Journal Title: Optics letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.