A high repetition-rate, few-cycle light pulse is of great importance due to its potential for a variety of applications, including two-dimensional infrared spectroscopy and time-resolved imaging of molecular structures, which… Click to show full abstract
A high repetition-rate, few-cycle light pulse is of great importance due to its potential for a variety of applications, including two-dimensional infrared spectroscopy and time-resolved imaging of molecular structures, which benefit from its ultrabroadband spectrum and ultrashort pulse duration. The generation of an ultrabroadband coherent spectrum is one of the frontiers of ultrafast optics, and accessing such few-cycle pulses is presently under active exploration. Here, we demonstrate a simple yet effective pulse synthesizer. It is based on two continuous-wave (cw) injection-seeded high-repetition-rate optical parametric amplification systems and the following self-phase-modulation dominated spectra-broadening processes. The combined spectrum spans from 1250 to 1670 nm, and a near Fourier-transform-limited 3.9-cycle (19.2 fs) synthesized pulse with a central wavelength of 1470 nm is obtained accordingly.
               
Click one of the above tabs to view related content.