Recently, terahertz (THz)-driven particle accelerators have drawn increasing attention. The development of high-energy-gain THz accelerators on chip has been a challenge. Here we propose a concept of an on-chip THz-driven… Click to show full abstract
Recently, terahertz (THz)-driven particle accelerators have drawn increasing attention. The development of high-energy-gain THz accelerators on chip has been a challenge. Here we propose a concept of an on-chip THz-driven particle accelerator that uses few-cycle THz pulses to drive dielectric prisms. It avoids the serious waveguide dispersion of previous THz linacs based on dielectric lined waveguides and enhances the electron-energy gain. In addition, we propose to use prism stacks to overcome the asynchronization effect when accelerating low-energy particles, by which a longer acceleration length with even higher energy gain can be realized. Compared with the available on-chip dielectric laser accelerators, the proposed scheme avoids serious dielectric dispersion and enhances accelerated bunch charge. Hence, it promises an attractive particle accelerator on chip.
               
Click one of the above tabs to view related content.